房产新闻 政策法规 物业管理 住房保障 下载中心 市场监管 维修资金 开发管理 征收补偿 预售公告
 
 
 
  新 闻 导 航
  房产新闻
  政策法规
  物业管理
  住房保障
  下载中心
  市场监管
  维修资金
  开发管理
  征收补偿
  预售公告
 

调动学生主体的学习动机  在影响学习效果的许许多多变量中
发布时间:2021-11-24 16:41    阅览次数:    来源:未知

  我在发挥学生的主体作用方面进行了积极的探索,并且在教学实践中取得了良好的效果。

  一、调动学生主体的学习动机  在影响学习效果的许许多多变量中,学习动机是起着关键作用的一个。它是学习活动的催化剂,并且具有一定的情感性因素。只有具备了良好的学习动机,学生才能认真思考,主动探索未知领域。实际教学中,我常常向学生介绍数学发展史、数学家故事、趣味数学等,以激发学生的学习动机。例如:我在讲解(a+b)n的展开式时,就向学生介绍了关于杨辉三角形的故事,激发了学生主动探究的欲望。又如:在讲解“三角形的任意两边之爱我中华作文和都大于第三边”时,我让学生思考“日常生活中有哪些实际应用的例子”,通过问题的引导启发,唤起了学生心理上的学习动机,并且形成了良好的心理指向。

  我经常用的方法还有:①用贴近学生生活的实例引入新知。这既能化难为易,又使学生倍感亲切;②提出问题,设置悬念;③对学生的学习效果及时肯定;④组织竞赛,设置愉快情境等。坚持做到这些,可以逐步强化学生的学习动机,从而调动学生的主体意识。

  二、让学生主体参与  在教学中,可以让学生观察、思考和讨论,并参与知识的形成过程。教师要尽可能地增加学生的参与机会,充分调动他们的眼、耳、鼻、舌、身等多种感官的作用。通过感性材料的丰富积累,学生才会建立起清晰的表象,然后才能进行比较、分析、概括等,从而使学生真正成为教学中的主体。我在实践中的做法如下:  1、让学生多观察。教学虽不同于一些实验性较强的学科,能让学生直接观察实验情况、得出结论,但数学概念的概念抽象、数学公式的发现推导、数学题目的解答论证,都可以让学生多观察。

  2、让学生多思考。课堂教学中概念的提出与抽象、公式的推导与概括、题目解答思路与方法的寻找、问题的辨析、知识的联系与结构等,都需要让学生多思考。

  3、让学生多讨论。课堂教学中,教师的质疑和设问可讨论,问题怎样解决可讨论。通过讨论,学生可以充分发表自己的见解,达到交流进而共同提高的效果。

  4、让学生多动手。例如:在研究“全等三角形的判定方法”时,我先提出了一个实际问题,然后指导学生动手画图实验:分别剪两个有“两边夹一角”、“两角夹一边”、“三边”对应相等的三角形,通过比较,启发学生自己总结出判定方法。这样既活跃了课堂气氛,又开拓了学生的思维,使学生在不经意中学到了知识。

  此外,教学中让学生多练习、多提问、多板演等都可体现学生的主体地位。

  三、营造良好的学习氛围  首先,良好的学习氛围有利于学生学习潜能的释放。和谐的师生关系有利于学生主动性、积极性的发挥。现代教育家认为:要使学生能够积极、主动地探索求知,就必须在民主平等、友好合作的师生关系基础上,创设愉悦和谐的学习氛围。

  其次,让学生在和谐愉快的学习氛围中张扬个性。教师要善于组织师生之间的双边活动,以便大多数学生都有发表见解的机会。例如:在上讨论课时,我精心设计好讨论题,并且对学生进行适当的指导,然后让学生讨论研究。这样,学安全生产月活动总结生在生动活泼、民主和谐的群体学习氛围中,既独立思考又相互启发,既促进了思维表达能力的发展,又挖掘出了学生主体的学习潜能。

  四、重视学习方法  在教学中,通过方法指导,可以不断强化学生的主体意识。教育心理学的研究成果表明:教师可以通过有目的的教学,促使学生有意识地掌握推理方法、思维方式和学习技能。教学过程是一个师生双边统一的活动过程。在这个过程中,教与学的矛盾决定了八年级历史下册教案教需有法、教必得法,学才有路、学才有效。否则,学生只会效仿例题,不能举一反三。因此,在教学中教师不能忽视“学生”这个主体,要尽可能地使教学设计贴近学生的“最近发展区”,引导学生积极、主动地学习,即通过设计适当的教学程序,引导学生从中悟出一定的方法。例如:当学生学完一个内容后,我就及时组织学生进行小结,让学生相互交流,并鼓励学生总结出个人行之有效的学习方法。在这个过程中,学生对自己的学习过程和行为进行反思并及时作出调整把爱情打包,真正发挥了学生的主体作用。

  五、在合作学习中发挥主体作用  新课程标准指出:“动手实践、自主探究、合作交流是学生学习数学的主要方式。”要让学生在合作交流、与人分享的氛围中学会参与、学会倾听、学会尊重他人,从而体现“学生为主体”的教育新理念。例如在执教“一次函数的图像和性质”一节内容时,我设计了如下环节:①六人一组,每人任画一个一次函数的图像;②观察、比较所画的图像,你们认为是什么图形?③找出你们所画图像的函数的k、b的值,再在同一坐标系中画出k相同的正比例函数的图像,观察它们之间有什么关系?④根据k的值进行分组,比较函数的图像,你们由此发现k对函数图像有什么影响?⑤根据b的值进行分组,比较函数的图像,你们由此发现b对函数图像有什么影响?⑥总结出当k、b取不同值时,一次函数分别经过哪些象限。学生在我的引导启发下,通过合作、讨论,很快认识了一次函数的性质。在这个合作学习的过程中,学生都“动”了起来,没有“旁观者”,很好地发挥了学生的主体作用。

  来源:233网校论文中心,作者:孙向东

 

Copyright (c)2001 版权所有 醴陵房地产门户网站网站地图 All rights reserved, www.hhsfcj.com